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Abstract
The choice of the baseline period, intentionally chosen or not, as a reference for assessing future
changes of any projected variable can play an important role for the resulting statement. In
regional climate impact studies, well-established or arbitrarily chosen baselines are often used
without being questioned. Here we investigated the effects of different baseline periods on the
interpretation of discharge simulations from eight river basins in the period 1960–2099. The
simulations were forced by four bias-adjusted and downscaled Global Climate Modelsunder two
radiative forcing scenarios (RCP 2.6 and RCP 8.5). To systematically evaluate how far the choice of
different baselines impacts the simulation results, we developed a similarity index that compares
two time series of projected changes. The results show that 25% of the analyzed simulations are
sensitive to the choice of the baseline period under RCP 2.6 and 32% under RCP 8.5. In extreme
cases, change signals of two time series show opposite trends. This has serious consequences for key
messages drawn from a basin-scale climate impact study. To address this problem, an algorithm
was developed to identify flexible baseline periods for each simulation individually, which better
represent the statistical properties of a given historical period.

1. Introduction

In the context of climate change mitigation and
adaptation, decision-makers generally call for
information about impacts of projected changes in
a specific region at different global warming levels
or in certain future periods. They need answers to
questions like: ‘Can we expect an increase or decrease
in water availability, extreme events, such as floods,
droughts, storm surges or heatwaves, around the year
2030, 2050 or by the end of the 21st century? And
what will be the consequences for, e.g. crop produc-
tion, renewable electricity generation?’ To answer
such questions, regional climate impact modelers
face a variety of challenges, which relate to technical,
methodological, and communication issues of sim-
ulation results [1] and corresponding recommenda-
tions under uncertainties in a comprehensible way.

Adding to technical and methodological chal-
lenges includes, e.g. the choice of climate scenarios,
climate and impact models, the use of bias-
adjustment methods, and model calibration and val-
idation periods. The performance of a climate model
is usually measured against its ability to represent
spatial patterns and trends in the historical climate.
Sometimes the performance is used to assign weights
to individual models within a model ensemble [2–7].
The uncertainty cascade in the impact modeling
is basically associated with model structure, model
parameterization, and input data quality [8–15].

After the simulations have been carried out, the
question about the baseline period used to compare
future simulation results to, will arise. Where future
scenario periods are usually defined to reflect the
decision maker’s planning horizon, baseline periods
are often chosen arbitrarily or are based on existing
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Figure 1.Map of case study river basins and climate zones. Source climate zones: Kottek et al (2016) [30].

standards. However, choosing a baseline period is a
sensitive issue and can be easily instrumentalized to
support specific conclusions, whether intentionally
or not.

The World Meteorological Organization (WMO)
recommends to use the 30-year period of 1961–1990
as the climate normal when comparing with future
periods and that this should be maintained as a ref-
erence for monitoring long-term climate variability
and change [16, 17]. Beyond that, a regularly updated
30-year baseline period, currently 1981–2010, should
be employed to give people a more recent context
for understanding weather and climate extremes and
forecasts [17–19]. The Intergovernmental Panel on
Climate Change (IPCC) used the 20-year period
1986–2005 as the baseline in many graphs in the
Fifth Assessment Report [20] and will use the years
1995–2014 in its Sixth Assessment Report. So, what
are climate impact modelers supposed to do? Which
baseline should they select and does it actually
matter?

At the global or continental scale, it is virtually
impossible to choose a baseline period whose cli-
mate is represented realistically by all climate mod-
els. An arbitrary determination of global baselines is
therefore justifiable. However, global and regional cli-
mate simulations are often not designed to synchron-
ize with real year to year patterns and events [21],
which creates a communication challenge, particu-
larly in regional impact studies. For example, some
climate models depict the mid-1980s as a period
with above-normal rainfall, when in reality a drought
hit West Africa. Others simulate the extraordinary
wet 1950s and 1960s as very dry. Nevertheless, well-
established global baseline periods are often used
unquestioningly in regional impact studies, although
the real-life statistical properties of the specific histor-
ical period may not be adequately represented by cli-
mate model simulations, therefore, also not in sub-
sequent applications.

Even though the implications of the choice of
baseline periods for the interpretation of simulation
results arewell known, little attention has been paid to
them in the climate impact community. Ruokolainen
and Räisänen (2007) [22] analyze the sensitivity of
forecasts to the choice of different baselines in South-
ern Finland. Razavi et al (2015) [23] emphasize that
different length of baseline periodsmay lead to differ-
ent conclusions about stationarity/non-stationarity.
Hawkins and Sutton (2016) [18] discuss the choice of
climate reference periods when comparing global air
temperature projected by climate models with obser-
vations. Huang et al (2018) [24] depict future flood
characteristics in future periods in four river basins
based on different 30-year baseline periods. Snell et al
(2018) [25] highlight the sensitivity to the choice of
baseline climate in dynamic forest modeling in the
Alps. Baker et al (2016) [26] assessed the impact of six
different climate baselines on projections of African
bird species’ responses to future climate change.
Although this issue has been addressed as a side effect
in several other studies, it has generally not been con-
sidered important to form the focal point for system-
atic research.

The present study systematically investigates the
effect of the choice of the baseline period on the inter-
pretation of simulation results. It provides examples
from eight river basins located in various climate
zones, where changes in projected future discharge
are estimated based on WMO and IPCC baselines
using four bias-adjusted and downscaled Global Cli-
mate Models (GCMs) from the Inter-Sectoral Impact
Model Intercomparison Project (ISIMIP) [27–29].
An index measuring the similarity between two time
series is introduced and was used to assess the sens-
itivity of choosing different baseline periods. We
developed an algorithm to overcome the problem in
cases of substantial deviations. It identifies a baseline
period, which consists of similar basic statistical prop-
erties as the historical period and is flexible in terms
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of length and timing. Although the main focus of this
study is the analysis of river discharge, the method
is in principle applicable to any time series variable,
such as meteorological data, crop yields, emissions of
greenhouse gases, hydropower potentials and so on.

2. Materials andmethods

2.1. Study sites
The impact of different baseline periods was invest-
igated by using simulated river discharge from eight
exemplary river basins located in various climate
zones from equatorial to polar (figure 1 and table 1).
The simulations were carried out within the frame-
work of various research projects (see references in
table 1). What they have in common is the hydro-
logical model, the same four forcing GCMs, and
the simulation period they cover (1960–2099), which
guarantees consistency across the study basins.

2.2. Data
The investigation was conducted using annual
mean discharge MQ, derived from simulated daily
discharge from eight river basins, based on cli-
mate model input from four GCMs in the period
1960–2099. The discharge was simulated with the
semi-distributed, eco-hydrological soil and water
integrated model (SWIM) [35, 36]. The down-
scaled and bias-adjusted GCM climate simulation
data were provided by ISIMIP [27–29, 37] for the
GFDL-ESM2M,HadGEM2-ES, IPSL-CMA5-LR, and
MIROC5 models. The aim is to provide harmonized
climate simulation input to impact modelers and
thereby to support the intercomparison of global and
regional impact studies.

2.3. Baseline periods
The impact of the baseline period on the interpret-
ation of changes in simulated future river discharge
was investigated by using two baselines established
by the WMO [17] and the IPCC [20]. The WMO
baseline covers the 30 years 1961–1990 and the IPCC
baseline the 20 years 1986–2005. Other IPCC reports
use also different and longer baseline periods. How-
ever, we chose the above-mentioned baseline here, as
it is used in many graphs in the IPCC AR5 report
[20] and is therefore likely to tempt impact model-
ers to use it as a standard in their studies. Interest-
ingly, the central limit theorem dictates that at least
30 samples are needed if we assume a normal dis-
tribution and to ample natural variability [38] as in
the case of the WMO [16, 19]. From this perspect-
ive, the IPCC baseline is thereby too short, especially
if variables with a high degree of natural variabil-
ity are considered, e.g. river discharge. However, one
could argue that the sample size is sufficiently large, if
the combination of years in the baseline period times
the number of models exceeds a critical threshold,
which is given in the case of the IPCC (20 years

times 40+ GCMs). In addition, the selection of the
baseline period should strike the balance between
being statistically robust and representative of the
target conditions (e.g. ‘present-day climate’). For rap-
idly changing variables, such as for instance extreme
temperatures, reference periods of 30 years or longer
might be considered insufficiently representative of
the target conditions.

In this study, we hypothesize that the baseline
period is a subset that accurately represents some
basic statistical properties of a historical period, here
defined as 1960–2005. An algorithm was developed
to identify for each simulation a baseline period of
variable length within a given historical period. The
algorithm searches for a baseline period whose mean,
minimum, andmaximum values correspond to those
of the historical period. In line with common practice
of hydro-climatic impact studies, the baseline period
should cover at least 30 years. The statistical prop-
erties of the baseline period are allowed to deviate
from those of the historical period by not more than
a user-defined threshold, e.g. 5%. If the algorithm is
not able to find an appropriate baseline with n= 30
years, n is incremented by 1. The resulting baseline
period is therefore flexible in terms of its length and
starting year and is called hereafter ‘flexible baseline’.
The corresponding function, implemented in R, is
provided in appendix A. It works only for annual
series but can be easily adapted for monthly or daily
series.

To account for the possibility of a linear climate
change trend in the historical discharge, the algorithm
was tested using a time series detrended using the
first (linear) differencing method (appendix B). In
general, the differences in the results were found to
be minor and the identified baseline periods to be
longer. To avoid accidentally removing or suppressing
some of the extreme years by applying a linear opera-
tion, results shown below are all based on the original
data.

2.4. Similarity index
TheMQ time series was used to compute the relative
change between a specific baseline and a correspond-
ing future period as follows:

∆MQi,j =
MQfuture,i −MQbase,j

MQbase,j

, (1)

where MQbase is the average of the annual values of
a specific baseline period andMQfuture the average of
a future period. The index i refers to different future
periods with central years between 2020 and 2080,
i.e. 61 time steps. The index j represents the differ-
ent baselines (WMO, IPCC, and flexible baseline),
where the length of the baseline determines the num-
ber of years around the central years in corresponding
MQfuture periods.

The mean absolute deviation between two∆MQ
time series, e.g. ∆MQWMO,i for the WMO and
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Table 1. River basins.

River basin Gauge Area [km2] Region Climate zone

Northern Dvina (DVI) [31] Ust-Pinega 348.000 Europe, Russian Federation Snow (Dfc)
Rhine (RHI) [24] Lobith 160.000 Europe Warm temperate

(Cfb)
São Francisco (SFC) [32] Outlet 640.000 S America Equatorial (Aw,

As), arid (BSh)
Tagus (TAG) [31] Almourol 70.000 S Europe Warm temperate

(Csa, Csb)
Upper Blue Nile (UBN) [4, 33, 34] El Diem 175.000 E Africa Arid (Aw), warm

temperate (Cwb)
Upper Mississippi (UMI) [24] Alton 440.000 N America Snow (Dfa, Dfb)
Volta (VOL) Outlet 403.000 W Africa Equatorial (Aw),

arid (BSh)
Upper Yellow (YEL) [24] Tangnaihai 121.000 China Polar (ET), snow

(Dwc)

∆MQIPCC,i for the IPCC baseline, over all k= 61 time
steps was then quantified as:

D=
1

k

k∑
i=1

|∆MQWMO,i −∆MQIPCC,i | . (2)

The deviation was then re-scaled by a user-
defined deviation threshold Dmax to an agreement
score value

AS=

{
1− D

Dmax
if D≤ Dmax

0 if D> Dmax

(3)

This Agreement Score ranges between one (no
deviation, perfect agreement) and zero (deviation lar-
ger than the threshold). In this study a threshold
value ofDmax = 25% was defined, because deviations
in discharge projections > 25% that are solely based
on different baselines, were considered to be very
large and indicative for a substantial difference. For
other applications (e.g. greenhouse gas emissions,
temperature, precipitation, wind speed) or by using
not relative but absolute changes for ∆MQi,j, other
threshold values might be more appropriate.

Apart from the deviation based on the choice
of different baselines, we quantified the direction of
change signals CS as

CSi,j =


1 if∆MQi,j > 0.01

0 if− 0.01≤∆MQi,j ≤ 0.01,

−1 if∆MQi,j <−0.01

(4)

compared the agreement between two baselines for
the future periods by setting

ACi =

{
1 if CSWMO,i = CSIPCC,i

0 if CSWMO,i ̸= CSIPCC,i
(5)

to eventually derive the average agreement in the dir-
ection of the change signal by

AC=
1

k

k∑
i=1

ACi. (6)

Finally, a Similarity Index was defined as

SI=
AS+AC

2
. (7)

A value of zero is derived if the selection of a
baseline has a large impact on the interpretation of
results of an impact study while the optimum value of
SI= 1 is achieved if the choice of the baseline would
have no influence at all. An intermediate value of
SI= 0.5 can be derived if the absolute deviations are
large with respect to the user-defined Dmax value, but
both baselines show the same directions of change
over all possible future periods. Likewise, a value of
approximately 0.5 is obtained when the choice of dif-
ferent baselines results in a bias with small absolute
deviation with respect to Dmax, although the direc-
tions of change deviate for all possible future periods.

The computation of SI was also tested by integ-
rating other factors, such as agreement in standard
deviation or R2, but the results achieved with a more
complex indicator were not considered to be more
meaningful than those achieved with the simplistic
approach. The SI was also used to assess the sensit-
ivity of the choice of the baseline depending on the
GCM and the climate zone.

3. Results and discussion

This section shows to what extent the choice of the
baseline alone can influence the interpretation of sim-
ulation results.

Figure 2 shows future ∆MQ series for selected
river basins relative to MQs in the WMO and IPCC
baselines. Future change signals and magnitudes of
change can be extremely different between the two
∆MQ series (figures 2(a) and (c)). Both examples
are therefore characterized by low SI values of 0.24
and 0.19, respectively, which indicate large differ-
ences of MQ values in the respective baselines. They
also demonstrate that neither the results based on the
one nor the other baseline generally tends to sug-
gest higher or lower future ∆MQ, a phenomenon
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(a) Volta (VOL), IPSL
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(b) Upper Blue Nile (UBN), HadGEM
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(c) Northern Dvina (DVI), GFDL
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(d) Rhine (RHI), MIROC5

Figure 2. Relative change inMQ of central years in four river basins using four different GCMs under RCP 2.6. Changes are
relative toMQ in WMO and IPCC baselines.

Table 2. Similarity index SI between WMO and IPCC∆MQ series (mean of period 2020–2080), RCP 2.6.

DVI RHI SFC TAG UBN UMI VOL YEL Average

GFDL 0.19 0.82 0.82 0.68 0.93 0.49 0.54 0.44 0.61
HadGEM 0.93 0.53 0.62 0.65 0.97 0.35 0.75 0.62 0.68
IPSL 0.43 0.65 0.15 0.55 0.88 0.73 0.24 0.95 0.57
MIROC5 0.86 0.84 0.81 – 0.19 0.92 0.8 0.62 0.72
Average 0.60 0.71 0.60 0.62 0.74 0.62 0.58 0.66

also found in river basins shown in appendix C. Con-
sidering the example of the Northern Dvina River
basin (figure 2(c)), one would conclude that future
∆MQ does not change substantially but rather fluc-
tuates around the historicalmean if the IPCC baseline
is used. A completely different conclusion would be
drawn with the WMO baseline, where ∆MQ is pro-
jected to increase between 22 and 32%. This illus-
trates how the choice of the baseline period, based on
the same model simulation, would lead to conflicting
recommendations for adaptation strategies.

Figures 2(b) and (d) show examples of future
∆MQ where it apparently does not matter which
baseline is used as reference. The corresponding SI
values of 0.97 and 0.84 are thereforemuchhigher than
in the other two examples. Recommendations for
adaptation strategies would consequently be much
less dependent on the choice of the baseline period
in these cases.

A visual assessment of the ∆MQ series with
the corresponding SI values in figure 2 is conclus-
ive, where low SI values indicate a high sensitiv-
ity to the choice of the baseline period and high
SI values a low sensitivity. As with model perform-
ance indicators (e.g. R2, PBIAS), an evaluation of
which value ranges indicate actually a good or poor
fit, or in the case of the SI, which values repres-
ent high or low sensitivity, remains somehow sub-
jective. In the context of simulated river discharge,
we propose SI values below 0.5 to indicate high
sensitivity.

The choice of the baseline period has the highest
impact on the interpretation of simulation results
performedwith the IPSLmodel and the lowest impact
with theMIROC5model. However, the average GCM
SI value (table 2) does not imply that this assump-
tion is true for all basins and all RCPs. The results
for RCP 8.5 are slightly different, where the highest SI
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Table 3. Ensemble mean∆MQ in selected future periods in [%] relative toMQ of WMO, IPCC, and flexible baseline, RCP 2.6.

2040 2060 2080

Basins WMO IPCC Flex. WMO IPCC Flex. WMO IPCC Flex.

DVI 9.2 −4.7 7.9 7.2 −4.7 6.0 8.0 0.7 6.6
RHI −4.2 −5.4 −4.8 −0.8 −3.1 −1.4 3.0 2.1 2.3
SFC −12.8 −6.3 −12.1 −14.0 −8.0 −10.4 −5.0 8.8 −4.5
TAG −5.6 −3.7 −5.6 0.3 0.0 −0.3 7.6 11.5 7.0
UBN 18.5 14.7 16.0 22.4 15.7 19.8 17.9 13.3 15.2
UMI −8.5 −7.9 −8.4 −4.1 −0.7 −3.5 1.1 3.9 2.2
VOL 10.6 8.8 11.2 9.3 16.6 10.1 2.4 7.3 3.3
YEL 1.8 5.5 4.0 7.7 13.3 9.7 5.6 11.8 7.7
Mean diff. 4.2 5.5 5.5
Min. diff. 0.6 0.3 0.8
Max. diff. 13.9 11.9 13.9
Median diff. 2.8 5.8 4.7
Last four rows indicate differences between WMO and IPCC∆MQ series
Flex.= flexible baseline
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Figure 3. (a)MQ in the Volta River basin simulated with IPSL and the range and timing of baselines, (b) relative change inMQ of
central years in the Volta basin with IPSL under RCP 2.6 (WMO, IPCC, and flexible baselines).

value is also achieved with the MIROC5 model, but
the lowest values with GFDL (table D1).

Assuming an SI threshold of 0.5, it mattered in
25% of the simulations under RCP 2.6 (table 2) and
in 32% under RCP 8.5 (table D1), whether the one or
the other baseline was used to assess future changes.
There are basically two options to deal with simula-
tions resulting in SI≤ 0.5: (i) discuss the uncertain-
ties and/or (ii) choose a different baseline that rep-
resents the basic statistical properties of the historical
period more consistently, e.g. by using the proposed
algorithm in appendix A.

To exemplify, the projected discharge changes
with an additional flexible baseline for the Volta River
basin is shown in figure 3. It explains why the results
derived with both baselines are so different. TheMQ
values for theWMO and IPCC baselines are 1454 and
1115m3s−1, respectively. The algorithm identifies the
30-year flexible baseline 1972–2001with anMQ value
of 1361m3s−1, which is much closer to the MQ of
the WMO than to theMQ of the IPCC baseline. Fur-
thermore, the range of values of the IPCC baseline is
much smaller. Where the years with the lowest dis-
charges are identical, the highest MQ is only 1800

but 3150m3s−1 in the WMO and flexible baselines.
This would make a significant difference in an ana-
lysis of the distribution of wet, dry, and extreme
years.

Results from all river basins under both RCPs
show that the projected ∆MQ series using flexible
baselines lie either in between or outside WMO and
IPCC ∆MQ. But, in all cases, they resemble the
WMO more than the IPCC ∆MQ series (figures in
appendix C), which is an indication that also the
length of the baseline period matters.

Table 3 shows relative differences of ensemble
∆MQ between WMO, IPCC, and flexible baselines
for all river basins around the central years 2040,
2060, and 2080 for RCP 2.6 and table E2 for RCP 8.5.
In the Northern Dvina River basin (DVI) in 2040
and 2060 and in the São Francisco River basin
(SFC) in 2080, the ensemble mean projects opposing
change signals between WMO and IPCC baselines,
with absolute differences up to 13.9% under RCP 2.6
and almost 20% under RCP 8.5. Relative differences
between WMO and IPCC baselines are lower if the
ensemble mean is considered (appendix E), but can
be very high for individual models, as was shown in
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figures 2(a) and (c). As with individual models, the
ensemble mean ∆MQ series of the flexible baseline
are alwaysmore similar to theWMO than to the IPCC
∆MQ series.

The sensitivity (SI≤ 0.5) of the choice of the
baseline period for different climate zones is incon-
clusive (table 2 and table E2). A larger sample size of
catchments from various climate zones is required to
make more robust statements. However, the lowest
sensitivity was achieved in warm temperate climates
(C) represented by the Rhine, Tagus, and Upper Blue
Nile River basins.

4. Conclusions

This study demonstrates how solely the choice of a
baseline period can influence the interpretation of
discharge projections in eight river basins using cli-
mate input from four bias-adjusted GCMs. To eval-
uate whether the choice of either the well estab-
lished 30 years (1961–1990) WMO [17] or the more
recent 20 years (1986–2005) IPCC [20] baseline mat-
ters, a similarity index SI was introduced as a meas-
ure to compare the two resulting time series of
future change. In about 25% of the simulations under
RCP 2.6 and in 32% under RCP 8.5, large quantit-
ative differences and/or opposite signals of change
were found, with at least one case of major discrep-
ancies in each river basin. The deviations for selected
future periods can be so large that they range from
−5% to +45% for a given central year. These figures
indicate that different recommendations for action
could possibly be derived in at least every fourth
case.

No systematic differences in the direction of
change using either baseline period could be identi-
fied. Neither the results based on theWMOnor those
based on the IPCC baseline tend to generally project
higher or lower future river discharge.

4.1. Choosing baseline periods
Given that a baseline period is normally a subset
of the historical period, it should represent its basic
statistical properties. From a formal statistical per-
spective, a minimum length of 30 years is highly
recommended for regional impact studies, particu-
larly when using integrated variables, such as river
discharge. We developed an algorithm, which iden-
tifies for each simulation a flexible baseline of vari-
able length and variable start year representing the
basic statistical properties of a given historical period.
In about 20% of the 32 simulations, the flexible
baselines were longer than 30 years, highlighting the
importance of longer-term perspectives to more con-
fidently quantify historic reference variability when
developing adaptation strategies. The use of flexible
baselines helps to reduce uncertainty in the interpret-
ation of model simulations in cases where standard
baseline periods do not capture the variability of the

historical period. If multiple ranges of uncertainty,
such as those implied by the impactmodeling cascade
and multi-criteria baseline selection, are combined,
the central limit theorem implies that central tenden-
cies are favored at the expense of extremes [39].

4.2. Regional context
At the local and regional scales, it is important to take
region-specific characteristics into account, where
other factors that are largely independent of past cli-
mate variability may also influence the choice of a
representative baseline period, e.g. degree of human
impact (land use/cover change, reservoirs, irriga-
tion). In this context, it is reasonable to question
whether the baseline period should represent rather
natural conditions (far back in time with low human
impact) or more recent conditions (with strong
human impact). Another reason why the application
of standard baseline periods is questionable is that
they are often detached from reality. If a baseline
period is chosen that, for example, was character-
ized by severe droughts in reality and future simula-
tions project relatively drier conditions (even though
the simulated baseline was above normal), stakehold-
ers may interpret that the future will be drier than
the driest period they have experienced in their lives.
Using flexible baselines is a solution to better tailor
information to the needs of decision makers while
addressing the challenge of uncertainty transparently
and efficiently.

4.3. Ensemble mean versus single model
simulations
Generally, the interpretation of results based on
model ensembles is less sensitive to the choice of
baseline periods than for single model simulations.
Nevertheless, in three cases, even the ensemble mean
using theWMOand IPCC baselines projected oppos-
ite change signals in selected future periods.

4.4. Outlook
An analysis of results based on monthly or daily time
series or a focus on extremes rather than the aver-
age might reveal an even higher sensitivity to chosen
baseline periods than the annual time series used
in this study. An improvement of the algorithm to
identify flexible baseline periods, in terms of incor-
porating more sophisticated statistical parameters
and tests, might be necessary if applied to monthly
or daily time series.
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Appendix A. Baseline algorithm (R)

#———————————————————————–
assess_deviations<- function(ts, ncycle, base_length,
ts.stats) {
# numeric vectors storing deviations between
# mean maximumm, and minimum values
# between flexible baseline and entire historical period
dev.mean<- numeric(ncycle)
dev.max<- numeric(ncycle)
dev.min<- numeric(ncycle)
for ( y in 1:ncycle ) {

sel<- ts[y:(y+ base_length - 1)]
dev.mean[y]<- (mean(sel, na.rm= T) -

as.numeric(ts.stats[1])) / as.
numeric(ts.stats[1]) * 100

dev.max[y]<- (max(sel, na.rm= T) -
as.numeric

(ts.stats[2])) / as.numeric(ts.stats[2]) * 100
dev.min[y]<- (min(sel, na.rm= T) -

as.numeric
(ts.stats[3])) / as.numeric(ts.stats[3]) * 100

}
assess_deviations<- list(dev.mean, dev.max, dev.min)

}
#———————————————————————–
#———————————————————————–
select_baseline<- function(ts, first_year, last_year, base_
length, thresh.dev) {

# This function returns a logical vector,
# where TRUE-values indicate the years of the ''best''

baseline period.
# The ''best'' baseline period is defined as
# the period of a given length (base_length)
# with the lowest deviations between mean, max, and

min values
# between the flexible baseline period and the entire

historical period.
# INCOMING VARIABLES
# ts= time series of (annual) values
# first_year= first year of time series
# last_year= last year of time series
# base_length=minimum number of years in baseline

periods
# number of cycles from first to last year, depending on

base_length
ncycle<- last_year - first_year+ 2 - base_length
nyears<- last_year - first_year+ 1

# statistics of entire time series
ts.mean<- mean(ts, na.rm= T)
ts.max<- max(ts, na.rm= T)
ts.min<- min(ts, na.rm= T)
ts.stats<- list(ts.mean, ts.max, ts.min)
#——————————————————————-
# iterations
#——————————————————————-
bs_length<- base_length - 1
nc<- ncycle
index<- NULL
ids.valid<- NULL
select_baseline<- vector(mode= ''logical'', length=

nyears)
while ( length(ids.valid)== 0 ) {

# add 1 year to baseline period if necessary during
iterations

bs_length<- bs_length+ 1
# if length of baseline period equals entire period:
# - return entire period and exit function
if ( bs_length== nyears ) {
print(''length of baseline period equals entire

period'')
select_baseline[1:length(select_baseline)]<- T
return(select_baseline)

}
# compute the number of cycles possible to iterate

the baseline
# period through the entire period
nc <- last_year - first_year+ 2 - bs_length

# compute mean, max., and min. deviations between
# baseline and entire period

dev.stats<- assess_deviations(ts, nc, bs_length, ts.stats)
# evaluate results against given threshold
ids.valid<- which(abs(unlist(dev.stats[1]))< thresh.

dev &
abs(unlist(dev.stats[2]))< thresh.dev &
abs(unlist(dev.stats[3]))< thresh.dev)

if ( length(ids.valid) >= 1 ) {
if ( length(ids.valid)== 1 ) {index<- ids.valid }
if ( length(ids.valid) > 1 ) {

# find tuple with lowest sum
sum.tuple<- abs(unlist(dev.stats[1]))

[ids.valid]+
abs(unlist(dev.stats[2]))[ids.valid]+
abs(unlist(dev.stats[3]))[ids.valid]

index <- ids.valid[which(sum.tuple=
=min(sum.tuple))]

}
}

}
select_baseline[index:(index+ bs_length - 1)]<- T
return(select_baseline)

}
#———————————————————————–

8



Environ. Res. Lett. 15 (2020) 104014 S Liersch et al

Appendix B. Using detrended historical data

Figure B1. Length and timing of baseline periods ‘original’ and detrended.
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Figure B2. Ensemble mean MQ changes using the ‘original’ flexible baseline and the detrended baseline.
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Appendix C. Relative discharge changes

C.1. RCP 2.6

Figure C3. Relative change in mean discharge of central years. Northern Dvina River basin (DVI) under RCP 2.6. Changes are
relative to mean annual discharge in WMO and IPCC baseline periods.

Figure C4. Relative change in mean discharge of central years. Rhine River basin (RHI) under RCP 2.6. Changes are relative to
mean annual discharge in WMO and IPCC baseline periods.
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Figure C5. Relative change in mean discharge of central years. São Francisco River basin (SFC) under RCP 2.6. Changes are
relative to mean annual discharge in WMO and IPCC baseline periods.

Figure C6. Relative change in mean discharge of central years. Tagus River basin (TAG) under RCP 2.6. Changes are relative to
mean annual discharge in WMO and IPCC baseline periods.
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Figure C7. Relative change in mean discharge of central years. Upper Blue Nile River basin (UBN) under RCP 2.6. Changes are
relative to mean annual discharge in WMO and IPCC baseline periods.

Figure C8. Relative change in mean discharge of central years. Upper Mississippi River basin (UMI) under RCP 2.6. Changes are
relative to mean annual discharge in WMO and IPCC baseline periods.
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Figure C9. Relative change in mean discharge of central years. Volta River basin (VOL) under RCP 2.6. Changes are relative to
mean annual discharge in WMO and IPCC baseline periods.

Figure C10. Relative change in mean discharge of central years. Upper Yellow River basin (YEL) under RCP 2.6. Changes are
relative to mean annual discharge in WMO and IPCC baseline periods.

C.2. RCP 8.5
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Figure C11. Relative change in mean discharge of central years. Northern Dvina River basin (DVI) under RCP 8.5. Changes are
relative to mean annual discharge in WMO and IPCC baseline periods.

Figure C12. Relative change in mean discharge of central years. Rhine River basin (RHI) under RCP 8.5. Changes are relative to
mean annual discharge in WMO and IPCC baseline periods.
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Figure C13. Relative change in mean discharge of central years. São Francisco River basin (SFC) under RCP 8.5. Changes are
relative to mean annual discharge in WMO and IPCC baseline periods.

Figure C14. Relative change in mean discharge of central years. Tagus River basin (TAG) under RCP 8.5. Changes are relative to
mean annual discharge in WMO and IPCC baseline periods.
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Figure C15. Relative change in mean discharge of central years. Upper Blue Nile River basin (UBN) under RCP 8.5. Changes are
relative to mean annual discharge in WMO and IPCC baseline periods.

Figure C16. Relative change in mean discharge of central years. Upper Mississippi River basin (UMI) under RCP 8.5. Changes are
relative to mean annual discharge in WMO and IPCC baseline periods.
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Figure C17. Relative change in mean discharge of central years. Volta River basin (VOL) under RCP 8.5. Changes are relative to
mean annual discharge in WMO and IPCC baseline periods.

Figure C18. Relative change in mean discharge of central years. Upper Yellow River basin (YEL) under RCP 8.5. Changes are
relative to mean annual discharge in WMO and IPCC baseline periods.
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Appendix D. Similarity index

Table D1. Similarity index SI between WMO and IPCC∆MQ series, RCP 8.5.

DVI RHI SFC TAG UBN UMI VOL YEL Average

GFDL 0.34 0.75 0.36 0.76 0.79 0.55 0.58 0.42 0.57
HadGEM 0.74 0.48 0.72 0.68 0.86 0.49 0.78 0.66 0.68
IPSL 0.52 0.53 0.39 0.35 0.86 0.88 0.28 0.92 0.59
MIROC5 0.86 0.43 0.81 0.94 0.30 0.79 0.78 0.60 0.69
Average 0.62 0.55 0.57 0.68 0.70 0.68 0.61 0.65

Appendix E. Ensemble mean

Table E2. Ensemble mean∆MQ in selected future periods in [%] relative toMQ of WMO, IPCC, and flexible baseline, RCP 8.5.

2040 2060 2080

Basins WMO IPCC Flex. WMO IPCC Flex. WMO IPCC Flex.
DVI 4.8 −5.8 3.3 5.5 −5.6 4.0 4.1 −5.7 2.7
RHI 3.0 1.5 2.3 −1.6 −2.7 −2.2 −2.3 −3.5 −2.8
SFC −8.2 −1.6 −3.9 −0.6 13.7 2.3 3.0 22.6 7.6
TAG −26.7 −21.1 −21.8 −41.5 −33.6 −41.8 −58.2 −54.2 −55.8
UBN 26.3 23.6 23.6 32.7 23.6 30.2 56.0 52.2 53.3
UMI 1.8 −1.5 2.4 −8.3 −6.3 −8.2 −6.5 −4.5 −6.6
VOL 14.6 20.4 15.6 3.6 5.2 3.9 −3.5 1.2 −3.4
YEL 0.4 3.2 2.2 7.3 13.4 8.7 6.1 11.5 7.7
Mean diff. 4.9 6.7 6.3
Min. diff. 1.5 1.1 1.2
Max. diff. 10.6 14.3 19.6
Median diff. 4.5 7.0 4.4
Last four rows indicate differences between WMO and IPCC∆MQ series
Flex.= flexible baseline periods
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Figure E19. Relative change in mean discharge of central years using the ensemble mean under RCP 2.6. Changes are relative to
mean annual discharge in WMO and IPCC baseline periods.
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Figure E20. Relative change in mean discharge of central years using the ensemble mean under RCP 8.5. Changes are relative to
mean annual discharge in WMO and IPCC baseline periods.
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